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1. Pnys.: Condens. Matter 6 (1994) 46734684. PrinIed in the UK 

Pseudopotential band calculations along a symmetry axis: 
spin-orbit interaction 

D Agassi and J B Restorff 
Naval Surface Warfare Center. Silver Spring, MD 20903-5000, USA 

Received 26 January 1994 

Abstract. A convergent method for local pseudopotential band stmcture calculations, based on 
a cylindrid coordinate multipole expansion, is generalized to include the spin-xbit interaction. 
The generalization is necessary for system that are highly anisotropic and where the spin- 
orbit intemction is essential. e.g.. narrow-gap semiconductor superlattices. The coupled wave 
equations for the corresponding multiples are derived and applied to a test case: the low bands 
of PbSe along lhe 11 1 I] direction. The calculated bands compare well with the PbSe band 
SWCtW. 

1. Introduction 

In a previous paper [l]  (hereafter referred to as I) we introduce a method for local 
pseudopotential band structure calculations along a symmetry axis. The method consists of 
expanding the wavefunction and pseudopotential in cylindrical coordinate multipoles, where 
the cylindrical coordinate system is chosen such that its z-axis coincides with the symmetry 
axis. Correspondingly. the three-dimensional Schrodinger equation is transcribed into a 
coupled set of one-dimensional wave equations for the multipoles. The method is expected 
to be advantageous for anisotropic systems such as epitaxial semiconductor superlattices 
and interfaces, where a particular direction in space is of special significance. The good 
convergence properties of the method are demonstrated in I for a test case. The objectives 
of this paper are to generalize the above method to include the spin-xbit (so) interaction, 
and demonstrate its implementation for a simple test case. This generalization is necessary 
in situations where the SO interaction plays an essential role and the structure is anisotropic. 
A case in point is the technologically important layered structure of heavy-element narrow- 
gap semiconductors of the &VI, IV-VI [Z] and NI-V systems. Since the so splitting and 
band gap are comparable for these semiconductors [3], it is necessary to include the so 
interaction for a realistic description of the small band gap. Other possible applications 
are magnetic layered structures [4] where the so and other spin interactions constitute an 
essential part of the physics, and g-factor calculations [5] for which the SO interaction and 
spin degrees of freedom are indispensable. It should be emphasized that although the non- 
scalar so interaction in these examples is essential for some aspects of the calculation, it is in 
general too weak to substantially ‘renormalize’ the central pseudopotential. Consequently, 
the effects considered here consist of SO admixtures of the central potential bands. 

At the core of the method is a cylindrical multipole expansion of lattice periodic 
functions. As an example consider a spinless band wavefunctions W(T’), where the crystal’s 
momentum k points along the symmetry axis direction. The corresponding cylindrical 
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multipole expansion is [ 11 
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In (1.1) and hereafter primed variables refer to the cylindrical coordinate system chosen 
such that its z-axis (2') coincides with the symmetry axis. The g p  index runs over a lattice 
specific non-negative series (see fable 1 for an FCC lattice), J&) is the Bessel function 
of order I [6] and (p,  @, 2') are the standard cylindrical coordinates. Good convergence 
of (1.1) implics that a small number of distinct multipoles *&F, z') suffices for a good 
description of the *(r') functions corresponding to low bands. 

Table 1. The 10wer;l g.values and Q&) angle (3.1) lor lhe PbSe (FCC) lauiice in lhe [ I  111 
direction I l l  and g = j / u  (A). 

f 

0 0 0 

10.2606 = 2nfi 1.6754 0 

20.5207 = 2 n f l  3.3507 0 

17.7714= 2 n d  2.9018 30 

27.1465 4.4326 19.1066 
30.7813 5.026 I 0 
35.5430 5.8036 30 
36.9944 6.0406 13.8979 

1 we used o(PbSe, T = 300 K) = 6.1243 A. 

The convergence of (1.1) hinges on two general properties, which severely limits the 
number of contributing 1 and g F  indices. The /-sequence is controlled by the symmetry 
of the 2'-axis. For example, group theoretic considerations imply that for an PCC lattice 
and , i ' ~ ~ [ l l l ]  only WO I values need be considered. All other multipoles are phase related 
to those two multipoles [I]. As a consequence, expansion ( 1 . 1 )  is in effect an expansion 
in gF. The gF expansion, in turn, is controlled by an energy-geometry consideration. To 
elaborate on this, note that the transverse behaviour of *(TI) is controlled by the oscillations 
of JI(gFp), with a period g;' [6]. Therefore, for 'low' bands, the important terms in (1.1) 
involve the lowest gp-valucs up to a 'small' cut-off value g,. For the [111] direction 
in particular, the latter has been estimated in I to satisfy ( l ,  + i ) /gc 0 S a ~  where 
/, is a 'typical' I-value and aT is approximately the lattice constant in the transverse 
direction. Thus both the I and the g variations in expansion (1.1) are severely restricted, 
hence the good convergence. Note that the above considerations are valid regardless of thc 
extension of the unit cell in the 2 direction. Thus expansion (1.1) is expected to become 
advantageous for structures where the unit cell extension in the 2'-direction is large, such as 
in superlattices. Another important feature of the method is the simplicity of the coupled set 
of wave equations for the multipoles. The pertaining coupling potentials are derived from the 
underlying three-dimensional local pseudopotential by means of geometrical coefficients- 
the 'A-coefficients' [ I ]  (see section 4). These coefficients control the transverse reciprocal 
lattice momentum addition. 

With the so interaction included, the above features hold true though the details change 
considerably. The main complication is that the spin wave function is comprised of two 
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components, pertaining to the two possible spin projections. Consequently two multipole 
expansions such as (1.1) need to be considered simultaneously and the total number of 
relevant multipoles roughly doubles. Correspondingly, the coupled set of wave equations 
for the multipoles (4.2), includes new spin terms. 

To demonstrate the implementation of the method we consider the band structure of 
PbSe along the [111] direction. This narrow-gap semiconductor without so has been 
studied in I, and a convergent multipole basis set has been established. The present PbSe 
calculation shows that given a correct description of the central potential bandstructure, the 
spin-generalized multipole wave equation (4.2) yields the correct bands. The analysis also 
demonstrates how group theoretic considerations determine the SO admixtures and the effect 
of band gap reduction by the SO interaction. 

The paper is organized as follows. In section 2 we introduce the multipole expansion 
in the presence of spin and in section 3 we discuss symmetry properties pertaining to the 
cylindrical multipole expansion. The derivation of the wave equations for the multipoles is 
outlined in section 4. The last section contains the results of PbSe band structure calculations 
along the r-L direction and a brief discussion. The technical details omitted here are given 
elsewhere 171. 

2. Cylindrid coordinate multipole expansions 

The spinor Bloch function in the unprimed coordinates (V"~(T)) has the form 

where hereafter parentheses (, . .) denote a spinor, and U:",(T) is a lattice periodic function 
[8]. To obtain the multipole expansion of (2.1) it is first transformed to the primed 
coordinates using [9] 

kI@(T)(X)l = [iL@(T)l[iLi(X)I (2.2) 

where k is the rotation operator, aTd @(T) and ( x )  are an arbitrary function and spinor, 
respectively. The spinor factor [R(x)I transforms according to the D'/*(or, b, y )  two- 
dimensional matrix [9,10], where CY, B, and y are the Euler angles, and the radial factor 
[kV(r ) ]  = V ( ~ - ' T ' )  has been discussed in I. Limiting ourselves, as in I, to crystal 
momenta k' such that k . T = I C ' .  T' = k'z', the wavefunction in the primed coordinates is 

(2.3) 

where the [ 11 11-projected crystal momentum k' is 

k' = K3x  fa' a' = a &  0 e K < 1. (2.4) 

The wavefunction spinor (2.3) entails two lattice periodic functions. Consequently, the 
steps in section 2 of I yield the multipole expansion 
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where the spin multipoles are given by 
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(2.5b) 

L' denotes a reciprocal lattice vector, L; its transverse component (normal to z'), Y (L') are 
the Fourier coefficients of Y(r') and the shift phase 6(L;) is defined in I. The summation 
in (2.56) is over all L' such that [Lkl =a. 

We turn now to the SO interaction. The standard 'atomic' form is C(r)(u.Z) 11 11, where 
U = (ux, uy, uz) is the Pauli matrix vector and 1 = -ir  x V. For a lattice periodic array 
of ions at ri the SO interaction takes the form 

(%o(T)) = - r i ~ ~  . l(v-v,)) = -iU . (f(r) x V) (2.6) 

where the lattice periodic so vector form factor f ( r )  is 

When expressed in this form, the transformation of (2.6) to the primed coordinates 
is straightforward since all factors on the LHS of (2.6) are invariant under rotation. 
Consequently (2.6) and (2.7) are valid in the primed coordinates provided that all factors 
are replaced by their primed counterparts. The form of the RHS of (2.6) is mathematically 
convenient to apply on products of the form cxp(iG'. r')(X'(u)) that enter the calculation. 

Since the vector form factor defined in (2.7) is lattice periodic, it has its own multipole 
expansion: 

The multipoles f & ~ ,  2') of (2.8) (of dimensionality [ E ' [ ] )  are the SO counterparts of the 
central pseudopotential multipoles. 

3. Symmetry properties 

As alluded to in section 1, not all f-values in the multipole expansion, e.g., ( l . l) ,  (2.5), 
are allowed, and not all allowed multipoles are independent [I]. These constraints and 
relations, which are part and parcel of the basic wave equation (see sections 4 and 5) ,  are 
discussed here. They are dictated by the symmetry group of the vector k (under which the 
Hamiltonian is  invariant). In the presence of the SO interaction and for the particular [ill] 
direction these are the double groups Cg) and DE) for the A and L points, respectively 
[9, IO]. The corresponding allowed I-sequences for the multipoles are given in tables 2 and 
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Table 2 The A-point allowed I-sequences. The corresponding representations of the double 
group Cc) are denoted in the notation of 1101. The upper and lower I-sequences in each 
spinor correspond to lhe a = +I  and a = - 1  components, respectively. For one- 
dimensional representations. UI(Z') and V,(z') are the z'dependent factors in the I-expansion 
of the hvo components of the basis spinor [7,9] (analogous to (2.1)). For the two-dimensional 
representalions, Wfr ' )  and X I ( Z ' )  correspond to Ul(z') and Q(z'), respectively, of the second 
basis spinor. 

Ineducible representation l-vdues~ I-parity li, b 

I I ) = ( ~ ~ + ~ )  3m - 1 ( -1)3m(!~  d )  
3 m -  1 

11) = ( 3m + 1 )  -(-IP ( !i A) 
0 0 0 1  
0 0 1 0  

1 0 0 0  
")=(3::l) 1 0 .) 

3 for the A and L points, respectively. Note that the I-sequences for 'up' and 'down' spin 
components are different, even though all entail f 3  increments. 

As in I, the central potential multipoles u,(gp, z') satisfy the l-periodicity relation [l]: 

ulf6(gP, z') = -e*"mo@P)ul(gp, 2') for sin[b@o(gp)] = 0 (3.1) 

and Opo(g) is given in table 1 [I] .  When sin[6Qo(g)] # 0, the corresponding I-periodicity 
relationship is more complex; however, for the test case in section 5, (3.1) suffices. As 
for the so vector form factor f(r'), (2.7), it can be shown [ I l l  that f(r') = V'V(r') 
where V(T' )  denotes a central potential with a multipole expansion of the form (1.1) 
where / = 0, f3, f 6 . .  . .. Consequently, by expressing the gadient operator in cylindrical 
coordinates and employing properties of the Bessel function [6], the following phase 
relations among the f(r) = (f'"'), f ' y ' ) ,  f"')) components are obtained: 

( X ' )  r , (9) fEiikQ, Z') = -f3m-l(gQI Z ) = 1f3m+!(gQ, z') 

( d )  , (Y') I ( 29  , According LO table 3 in I the I-sequence in (3.2) implies that (fi (z )) and fi (z ) 
transform as the L; and L; representations of D3d. respectively. 

Comparing the irreducible representations' allowed /-sequences with and without spin, 
i.e., tables 2 and 3 with tables 2 and 3 in I, readily reveals which zero-spin bands are 
admixed by the so interaction, i.e., the compatibility relations [9] .  Consider first the case of 
a A-point, i.e. compare table 2 with table 2 in I. By matching the I-sequences it follows that 
the spinless A , ,  A2 and A3 representations are admixed to yield the A6 spin representation. 

(z ), f ,  
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Table 3. The L-point allowed I-sequencer. The corresponding mpwntarions of the double 
group DE are denoted in the notation of [IO].  The symbols are explained in the caption of 
table 2. 

Irreducible representation 1-values' I-parity irrb 2-parity ir,c 

L: ll)=(;;;;) ( - 1 ) q ;  ;i) wq; ;) 

L; lib(;;;;) (-P(? ;i) ;) 

L: ii)=(:;;:) - ( - 1 ~ ( ~  0 -i o )  (-I)!(: ;) 

L; 

By the same token, the spin representations A.+, A5 result from lifting the degeneracy of 
the zero-spin As representation. A similar comparison at the L-point between table 3 and 
table 3 in I implies that the so interaction admixes the LI,  Lz and L, representations (and 
the negative z-parity representations L;, L; and L;) to form the spin representation Lz 
(and L;). Likewise, the Lz5 spin representations (and LT5) are obtained by lifting the 
degeneracies in the L3 (and L;) zero-spin representation. 

4. The multipole wavefunction 

To derive the multipole wave equation we start from the SchrGdinger equation in the primed 
coordinates [7]: 

[-v" -+ ( 2 m o / f i 2 ) ~ . ( k )  - (2mo/fi2)u(r') - ( ~ m o / h ~ ) ( ~ o ( r ' ) ) ~ ( ~ " k ( r ' ) )  = o (4.1) 

where U(+) is the central potential, ( ~ ~ O ( r ' ) )  is the non-scalar SO interaction (2.6) and mo 
is the effective mass, chosen here~[l]  as the free electron mass. Inserting wavefunction 
and potential multipole expansions (2.5), (2.6), (U), and (2.7) of I, into (4,l), projecting 
on- ei*+, factoring out the Bessel functions, expressing the products 'u(r')q(r')' and 
'(Vso(~')Y(~'))' in terms of the multipoles and projecting on the two spin states ~'(a) 



Pseudopotential band calculnfions with spin-orbit interaction 4679 

yields the multipole wave equation [7]: 

where 

h(*)(gp, z’) = fi’*”(gp, 2’) i i$’)(gp, 2’). (4.26) 

The symbols in (4.2) are as follows. The band energy is denoted by E,(k‘), $*”(g~, z’) are 
the multipoles of the two spin-projection wavefunction components (2.5), U,(@, z‘) are the 
central potential multipoles [I], fi*)(gp, z‘) and f:”(gp, z‘) are the SO vector form factor 
multipoles given by (2.8) and (4.2b) and the geometrical ‘A-coefficients’ Al,,(go. gp, gF) 
have been introduced and discussed in I. The wavefunction multipoles obey the Bloch 
theorem in the [ 11 11 direction [ 11: 

( 4 . 2 ~ )  
where k’ and a* are defined in (2.4). The Bloch theorem in the x‘  and y‘ directions is 
manifested in the multipole phase relations (3.1) and (3.2). 

The single-variable wave equation set (4.2) is the central result of this work. It applies 
to the [I1 I] direction of cubic lattices through the particular A-coefficients, the &sequence 
and the g-sequence. In keeping with the paradigm of I, the band symmetly is specified 
by specifying the l-sequence according to tables 2 and 3, and the pertaining ascending 
g-sequence is selected from table 1 according to convergence considerations. 

The first two terms in (4.2) are precisely the zero-so wavefunction of I, but with the 
spin degeneracy explicitly manifested by having and * ( - I )  satisfy the same wave 
equation. The rest of the terms in (4.2) are so terms. They are seen to be both diagonal 
and non-diagonal in U and since the SO interaction is velocity dependent, all SO terms 
have either an explicit ‘gF’-factor or a first-derivative operator ‘dfdz”. The complexity of 
(4.2) in comparison with its zero-spin counterpart (the first two terms) underscores the well 
known difficulty of incorporating SO interaction into band calculations. The structure of 
(4.2), however, implies that in the present framework the extra effort amounts to essentially 
just doubling the multipole basis. 

The U block structure of (4.2) for the [I 1 I ]  direction and a cubic lattice is given in 
table 4.  Part ( a )  of table 4 shows that for the L$ (A6) bands the so terms enter in one 
diagonal block ( I  = 3m+ 1) and the off-diagonal blocks. By contrast, part ( b )  shows that for 
the L& (A4.5) bands only the diagonal blocks ( I  = 3mf 1) involve so terms. This structure 
is understandable. Since the 1 = 3m block is associated with s waves (and higher even 
1-waves) and the I = 3m rt 1 blocks are associated with p waves (and higher odd 1-waves), 
it follows that the diagonal 1 = 3m f 1 so terms describe the p-wave so interaction, while 
off-diagonal terms describe the SO &p mixing. This particular structure motivates the SO 
parameterization adopted in section 5. 

*pl(gF, i + a * )  = e‘“’~~p)(g~,  z’) 



4680 D Agassi and J B Restorff 

Table 4. 
The corresponding U and I-sequences are indicated. 

(a )  L,' (AG) representations 

block sVUcNre of the wavefunctions (4.2) for lhe L: ( A d  and L6iS (A4.s) bands. 

a = - I  a = t l  
(3m t 1) (3m) 

u(6P.L')+f(*)kP*Z'!  f ' * k w . Z ' ) $  t f(%.Z') 
a = - 1  
(3m t 1) 

n = + 1  
(3m) 
i /(*)(6P,Z')& t f % p , i )  U k P .  2') 

(b) Lt5 (A4.s) representations 
n = - l  n = t l  
(3m + 1) (3m - I )  

0 
< = - I  
(3m t 1) 

n = + l  
(3m - I \  U(SP.2') + f " ) @ P . Z ' )  

5. Band structure of PbSe in the r-L ([lll]) direction 

To demonstrate the implementation of (4.2) we calculate below the low bands of PbSe along 
the r-L line. This same example has been calculated and discussed in 1 in the absence of 
the SO interaction. The goal here is to compare the results with SO to other pseudopotential 
calculations. A11 of the results were obtained using a PC 386/25 MHz with 4 Mb memory in 
double precision. The latter is needed given the expected small band gap 121. The secular 
equation in a plane wave basis employed 15 plane waves per multipole [7]. 

The steps in setting up the calculation are as follows [l] .  First establish which bands are 
coupled by virtue of symmetry, then specify the phenomenological interaction and finally 
select the multipole basis. As table 4 shows, the L: (As) and L& (A4.*) bands decouple, 
and hence are calculated separately. The central pseudopotential is taken from [13], as in I. 
The SO parameterization, however, is not readily available: [121 and [I31 incorporate the so 
interaction using different formalisms, with parameters not explicitly given. Therefore we 
are led to adopt a parameterization compatible with (2.7) and based on a mix of atomic and 
measured band structure data [12-15]. Thus for PbSe with two atoms in the unit cell, we 
assume two local SO form factors (Pb(l?- - ~ p b l ) ,  & ( I T  - rsel) (Ppb at the origin and qe at 
rse = (0, 0, a 'p )  of the unit cell) with a normalized Gaussian radial dependence [7]. This 
choice calls for four parameters: the two strengths and two ranges of the <(Irk) form factors. 
For the ranges we take the atomic core radii r(Pb) = 1.45 A and r(Se) = 1.16 A. The form 
factor strengths are parameterized in proportion to the atomic Pb and Se so strengths, with 
a ratio of four [7,12,14,15]. The overall SO strengths are left as adjustable parameters, 
which are fitted to particular measured band gaps. To accommodate the difference between 
the s and p wave so strengths [16]. and based on the block structure of table 4, we introduce 
two dimensionless scale parameters SD and SND for the diagonal and off-diagonal blocks of 
table 4, respectively. Thus the overall so strengths for Pb and Se are A(Pb), A(Se) where 

and A(Pb), A(%) are atomic SO strengths chosen as APb) = 0.56 eV and A(Se) = 0.14 eV 
VI .  
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The last step is choosing the multipole basis set. Recalling that the so interaction is the 
non-scalar relativistic correction to the central pseudopotential (although it may substantially 
alter specific bands) the natural choice is the set for which the central pseudopotential 
calculations converge. For the L t  bands, table 5 in I and table 4 indicate that this set is 
comprised of 12 multipoles, the six multipoles for the LS, L; bands and the six multipoles for 
the Lt, L; bands, all admixed by the SO interaction. Correspondingly, the L& bands employ 
the six multipoles for the 4, LI, bands [ l ] .  Unfortunately, the largest set that can be handled 
by our computer is eight multipoles. Consequently, for the Lf bands we choose (table 5 in 
I, table 4) the following. For U = -1 the multipoles are ( I ,  g ( n ) )  = ( -2 ,  g(2)). ( l , g ( 2 ) ) ,  
(-2,g(3)), (1 ,g (3 ) )  and for = 1 they are ( I , g ( n ) )  = (O ,g ( lN ,  (O,g(2)), (O,g(3)),  
(3 ,  g&)), where g(n), in ascending order, are listed in table 1. Correspondingly, the set for 
the L& bands is (see table 4) (1,  g ( n ) )  = (-2, g(2)), ( l . g ( 2 ) ) ,  ( -2 ,  g (3 ) ) ,  (1, g(3)) for 
U = &I. However, this multipole basis has two drawbacks: as figure l ( a )  shows, it is mt 
adequate for the lower half of the i'-L line as evidenced by the band crossings for K < 0.5 
(2.4). Also, the calculated L-point band gap is considerably larger than the experimental 
value, i.e., 0.53 eV versus 0.16 eV [2 ] .  Notwithstanding these disadvantages, for the present 
purpose of demonstrating the implementation and validity of (4.2) this set is appropriate. 
In particular, the physically interesting band structure around the L point (K = 1) is well 
within the convergence domain, and the effect of the large zero-so band gap is expected 
just to be reaected in 'large' fitted so strengths. 

Table S. The qualibtive dependence of the relevant L: band energies (eV) near the band gap 
in PbSe on the two so strength parameters, (5.1). The eightmultipole set discussed in seclion 5 
that enters the calculation is as follows. For U = - I  the multipoles are (1. = (-2, ~ ( 2 ) ) .  
(1.E(2)).(-2,E(3)).(1,9(3))andforn = I  theypre(l,E(n)) =(O,h'(I)), (O.S(Z)). (O.E(3)). 
(3. ~(2)) and g(n) .  in ascending order, are listed in table 1. ihr mow indicates the band energy 
movement with respect to the m o - S O  bands. The band gap A E  is between the two innermost 
bands. 

SND. SD 

Bandsymmetry 0.0 0. -20 0,ZO +30,0 30, 30 -30, -30 

L; 
(L;)10.7 1 1 . 4 t  10.01 10 .6 t  lO.05 11.7t 
a!,) 9.4 9.4 9.4 9.3 I 9.4 1 9.3 I 

L; 

iL;j 8.9 8.9 8.9 8.8 i 9.1 r 8.8 i 
(L3) 7.2 6.8 1 1.5 t 7.0 1 7.5 t 6.5 J. 

L: 
L: 

0.5 0.5 0.5 0.3 0.5 AE&; -Ll) 0.5 

Before presenting the full calculation, the qualitative so features for the four relevant 
L: bands around the band gap are demonstrated in table 5. Again, in the absence of so 
interaction these bands are depicted in figure l ( a )  [l] .  In the presence of the so interaction 
consider first the limit of Sm = 0. As table 4 implies, only the p-wave blocks ( I  = 3m + 1) 
are modified. This is evident from the second and third columns of table 5: the outermost 
two L* bands, which pertain to the p-like Ls, L; components, move, while the innermost 

is consistent with the known angular momentum content of these bands [17, table IV]. 
Note that positive SD leads to band clustering while negative SD has the opposite effect. 
In the other limit of SD = 0, table 4 implies that only off-diagonal s-p mixing blocks do 
not vanish. As the fourth column in table 5 shows, the band gap is reduced in this case 
regardless of the sign of SND. This result is plausible in view of the compatibility relations 

two L, p. bands, which pertain to the s-like L1,  L; components, do not. This 1-assignment 
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r.LEANDSTRUCTUREOF PbSe 
~ 

-10 
0.0 0.2 0.4 (1.6 0.8 1.0 

L K 

(a1 

r 

'O. t 

I K 

(4 (b) 

Figure 1. Cdculated Lmd s m e ~ r e ~  of PbSe along the r-L direction. Band symmevies me 
denoted in he notation of [IO]. (a) The zero-so band smclure interaction. The (L1. L;) and 
(Ls, L;) bands are each calculated with their four-multipole basis discussed in section 5 [I. 
table 51. The K symbol is defined in (2.4). ( b )  The calculated band Smcture for K Z O S  with 
so strength pyameters (5.1) SD = -15, SND = -60. The multipole basis employed for the L t  
bands is the eight-multipole basis discussed in Section 5 and mentioned in lhe caption to table 5. 
The L:5 bands Jre calculated with the four multipoles discussed in section 5. (e )  The [ I  I] band 
smcture reproduced from 1131. 

discussion in section 3: the SO interaction admixes the (L3, Ll) and the (L;, L;) bands. 
Consequently, given the particular arrangement of the L3, L1, J.& L; bands around the band 
gap in figure I(a) a level-repulsion argument implies that the innermost band gap is reduced 
by the so interaction. This qualitative trend is clearly demonstrated in figure 2(a) for the 
particular case of SD = SND < 0. 

When SND, SO # 0, the 'correct' signs of SD. SND are assessed by the following 
consideration. For the L i  bands (table 4), which determine the band gap, the difference 
between the diagonal 'U' terms (the 1 = 3m block) and the 'U + j*' terms (the I = 3m f 1 
block) corresponds to the difference between the s i p  and p1/2 SO potentials. Since for the 
related semiconductor PbTe this difference is negative [161, it is expected that SD < 0. 
The SND parameter is expected to have the same sign since the symmetries of (4.2), which 
was derived assuming SND = SD, are preserved only when SD and SNO, have the same 
sign. Indeed, as the last two columns of table 5 show, taking SD and SND > 0 leads to 
'clustering' of all four bands, which is inconsistent with another band structure calculation 
[13] (figure l(c)). Therefore that the physical choice is S, and SND 4 0. in keeping with 
the argument above. For this sign choice, figure 2(b) shows that a sufficiently strong so 
interaction reduces the band gap to the point of 'band inversion' and beyond. This effect 
underlies the observed 'inverted gaps' in heavy-element narrow-gap semiconductors, such 
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SND = ID 
(*I 
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Figure 2. The dependence of the relevant L," bands near the band gap on the so strength 
parameters for SD = SND c 0: ( a )  the four neamt bands; ( b )  the corresponding band gap Afi. 

as in the IV-VI system [2]. 
Figure I(&) and l(c) compares the calculated ten lowest bands for K > 0.5 and a 

'correct' band structure. For the latter we take the calculation of Kohn et a1 [13] given that 
other pseudopotential and ab initio calculations [E, 13,16,17] yield essentially identical 
results near the band gap. The comparison for the relevant six bands near the band gap is 
seen to be good. The fitted so parameters S, = -15, SND = -60 approximately reproduce 
three experimental band gaps at the L-point: the band gap E&;) - E(L:) = 0.24 eV 
and the gaps between the two adjacent L: and L; bands, which are 1.86 eV and 2.14 eV, 
respectively. These band gaps are in good agreement with the calculations of Kohn et a1 
[13]. The fitted so strengths reflect the fact that the zero-so band gap (0.53 eV [I]) is 
larger than the experimental value by about a factor of four. The value of SD is of the 
correct magnitude since S0/4 yields strengths A(Pb), A(Se) (5.1) comparable to atomic 
so splittings [14]. For K < 0.5, where the present zero-spin multipole set is inadequate 
(see figure I(a)), the calculated band structure is expected to give poor results since the 
so interaction-which is but a correction to the central potential-annot compensate for 
inadequacies in the central potential band description. 

In summary, we have generalized a cylindrical coordinate method for local 
pseudopotential band calculations to include spin degrees of freedom and the so 
interaction. The ensuing set of coupled, one-dimensional wave equations is derived. Their 
implementation is demonstrated for the test case of PbSe bandstructure in the [ 11 11 direction. 
These results establish the usefulness of the generalized cylindrical multipole expansion 
method with the following proviso: provided the chosen basis adequately describes the 
central pseudopotential band structure in a portion of the Brillouin zone. The reverse is 
also true: whenever the chosen multipole basis inadequately describes the central potential 
bandstructure, adding the so correction is expected to produce nnphysical results. Another 
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attractive feature of the cylindrical representation is that it indentifies the band admixtures 
which are induced by the so interaction. In the particular case of PbSe (and the Pb salts), 
the tendency toward band inversion for a sufficiently strong so interaction can be readily 
understood. 

Acknowledgments 

We would like to acknowledge useful discussions with Dr J R Cullen. This work was 
supported by the Office of Naval Research and the NSWC Independent Research Funds. 

References 

131 

151 
[41 

[121 
1131 

1151 
1141 

[16j 

1171 

Agassi D and ResloflJ B 1994 1. Phys.: Cmzdenr. Maller 6 1497 
Nimtz G and Schlicht B 1985 Narmw Gup Semiconduc1or.s (Springer Troctr in Modern Physics 98J (Berlin: 

Springer); 1962 Physics and Chemistry <fll-VI Cvmpoundr ed M Aven and 1 S Prener (Amsterdam: 
North-Holland) 

See, for insmce, Philips J C 1973 Bond and Bands in Semicnnductom (New York Academic) p 122 
Erickson R P. Hihaway K B and Cullen I R 1993 Phys. Rev. B 47 2626 and references therein 
See. for instance, Cohen M H and Blount E I 1960 Phil. Mug. 5 115 
Yaffei Y 1963 Soiid State Physkr voI 13, ed F Seia, D Tumbull (New York Academic) p 2 
Abramowilz M and Stegun I A 1964 Hondbovk oJMathematicrr1 Funeliom (AppliedMuthemurics Series 55) 

Agassi D and Restorff J B NSU'C 7khnicui Report TR91-326 available upon request from lhe National 

See, for instance, Zeiger H J and Pnu G W 1973 Magnetic lnterucrionr in Solid (Oxford Clarendon) 

Morgan D J 1965 Solid Stotc Theory ed P T Landrberg (London: Wiley-Interscience) p 232 
Slater J C 1965 Quuntum Theory of M&ules ond Sdi& vol2 (New York McGraw-Hill) appendix 9 
Jones H 1975 The Theory of Eriilouin Zones ond Elecrmnic Stmcs in CrystaLr 2nd edn (Amsterdam: North- 

Martinez G. Schluter M 3nd Cohen M L 1975 Phys. Rev. 11 651 
Kohn SE. Yu R Y, Pevoff Y, She" Y R, Tsmg Y and Cohen M L 1973 Phy.  Rev. B 8 1477 
Philips J C 1973 Eondr Md Bond? in Semiconductors (New York Academic) p 178 
Zeiger H I and Pmtt G W 1973 Magnetic lntemctionr in Solids (Oxford: Clarendon) p 85 
See, Rabe K M and Joannopoulos 1 D 1985 Phy,?. Rev. 32 2303: F'bTe and PbSe belong lo the same IV-VI 

Dalven R 1973 Solid Sratc Phy.sics ~01'2.8, ed Ehrenreich H, Seitz F and Tumbull D (New York: Academic) 

(Washington, D C  National Bureau of Smdxds)  ch 9 

Technical Information Service. Springfield. VA 22161 

appendix 4 

Holland) ch 7 

system 

p 179 


